skip to main content


Search for: All records

Creators/Authors contains: "Rost, Christina M."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. As various property studies continue to emerge on high entropy and entropy-stabilized ceramics, we seek a further understanding of the property changes across the phase boundary between “high-entropy” and “entropy-stabilized” phases. The thermal and mechanical properties of bulk ceramic entropy stabilized oxide composition Mg 0.2 Co 0.2 Ni 0.2 Cu 0.2 Zn 0.2 O are investigated across this critical transition temperature via the transient plane-source method, temperature-dependent x-ray diffraction, and nano-indentation. The thermal conductivity remains constant within uncertainty across the multi-to-single phase transition at a value of ≈2.5 W/mK, while the linear coefficient of thermal expansion increases nearly 24% from 10.8 to 14.1 × 10 −6 K −1 . Mechanical softening is also observed across the transition. 
    more » « less
  2. High entropy oxides are emerging as an exciting new avenue to design highly tailored functional behaviors that have no traditional counterparts. Study and application of these materials are bringing together scientists and engineers from physics, chemistry, and materials science. The diversity of each of these disciplines comes with perspectives and jargon that may be confusing to those outside of the individual fields, which can result in miscommunication of important aspects of research. In this Perspective, we provide examples of research and characterization taken from these different fields to provide a framework for classifying the differences between compositionally complex oxides, high entropy oxides, and entropy stabilized oxides, which is intended to bring a common language to this emerging area. We highlight the critical importance of understanding a material’s crystallinity, composition, and mixing length scales in determining its true definition. 
    more » « less
  3. Abstract

    Topological kagome magnets RMn6Sn6(R = rare earth element) attract numerous interests due to their non-trivial band topology and room-temperature magnetism. Here, we report a high entropy version of kagome magnet, (Gd0.38Tb0.27Dy0.20Ho0.15)Mn6Sn6. Such a high entropy material exhibits multiple spin reorientation transitions, which is not seen in all the related parent compounds and can be understood in terms of competing magnetic interactions enabled by high entropy. Furthermore, we also observed an intrinsic anomalous Hall effect, indicating that the high entropy phase preserves the non-trivial band topology. These results suggest that high entropy may provide a route to engineer the magnetic structure and expand the horizon of topological materials.

     
    more » « less
  4. Abstract

    High‐entropy materials defy historical materials design paradigms by leveraging chemical disorder to kinetically stabilize novel crystalline solid solutions comprised of many end‐members. Formulational diversity results in local crystal structures that are seldom found in conventional materials and can strongly influence macroscopic physical properties. Thermodynamically prescribed chemical flexibility provides a means to tune such properties. Additionally, kinetic metastability results in many possible atomic arrangements, including both solid‐solution configurations and heterogeneous phase assemblies, depending on synthesis conditions. Local disorder induced by metastability, and extensive cation solubilities allowed by thermodynamics combine to give many high‐entropy oxide systems utility as electrochemical, magnetic, thermal, dielectric, and optical materials. Though high‐entropy materials research is maturing rapidly, much remains to be understood and many compositions still await discovery, exploration, and implementation.

     
    more » « less
  5. null (Ed.)